Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 158(24)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37347135

RESUMEN

The research presented in the paper concerns the elastic properties of struvite. The article combines theoretical and experimental research. Experimental studies were carried out on struvite single crystals grown in sodium metasilicate gel by single diffusion. This unique method leads to obtaining crystals of sufficiently large size to conduct, for the first time, experimental measurement of elastic properties of monocrystalline struvite. Using the nanoindentation method, the Ez = 29.1 ± 0.7 GPa value of the component of Young's modulus was determined for a struvite single crystal. In addition, the elastic constants C11, C22, and C33 were determined using micro-Brillouin spectroscopy. Theoretical calculations of the abovementioned properties have been carried out by employing density functional theory methods. Scaling of the theoretical elastic constants leads to obtaining good agreement with the experimental values. Values of the Ex and Ey components of the Young's modulus, not available from the experimental nanoindentation technique, have been determined theoretically as 23 GPa and 27 GPa, respectively. Differences in the values of elastic components and Young's modulus components are related to the layered crystal structure of struvite and directional character of the hydrogen-bonding pattern.


Asunto(s)
Estruvita , Módulo de Elasticidad , Enlace de Hidrógeno
3.
Sci Rep ; 11(1): 21369, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725389

RESUMEN

Heart diseases are associated with changes in the biomechanical properties of the myocardial wall. However, there is no modality available to assess myocardial stiffness directly. Brillouin microspectroscopy (mBS) is a consolidated mechanical characterization technique, applied to the study of the viscoelastic and elastic behavior of biological samples and may be a valuable tool for assessing the viscoelastic properties of the cardiac tissue. In this work, viscosity and elasticity were assessed using mBS in heart samples obtained from healthy and unhealthy mice (n = 6 per group). Speckle-tracking echocardiography (STE) was performed to evaluate heart deformation. We found that mBS was able to detect changes in stiffness in the ventricles in healthy myocardium. The right ventricle showed reduced stiffness, in agreement with its increased compliance. mBS measurements correlated strongly with STE data, highlighting the association between displacement and stiffness in myocardial regions. This correlation was lost in pathological conditions studied. The scar region in the infarcted heart presented changes in stiffness when compared to the rest of the heart, and the hypertrophied left ventricle showed increased stiffness following aortic stenosis, compared to the right ventricle. We demonstrate that mBS can be applied to determine myocardial stiffness, that measurements correlate with functional parameters and that they change with disease.


Asunto(s)
Estenosis de la Válvula Aórtica/patología , Infarto del Miocardio/patología , Miocardio/patología , Animales , Estenosis de la Válvula Aórtica/diagnóstico , Modelos Animales de Enfermedad , Ecocardiografía , Elasticidad , Diagnóstico por Imagen de Elasticidad , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/diagnóstico , Análisis Espectral
4.
Mater Des ; 192: 108702, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33154608

RESUMEN

Size, shape and hot spots are crucial to optimize Raman amplification from metallic nanoparticle (NPs). The amplification from radius = 1.8 ± 0.4 nm ultra-small silver NPs was explored. Increasing NP density redshifts and widens their plasmon that, according to simulations for NPs arrays, is originated by the reduction of the interparticle distance, d, becoming remarkable for d ≤ R. Inter-particle interaction red-shifts (N130 nm) and widens (N90 nm) the standard plasmon of non-interacting spherical particles. Graphene partly delocalizes the carriers enhancing the NIR spectral weight. Raman amplification of graphene phonons is moderate and depends smoothly on d while that of Rhodamine 6G (R6G) varies almost exponentially due to their location at hotspots that depend strongly on d. The experimental correlation between amplification and plasmon position is well reproduced by simulations. The amplification originated by the ultra-small NPs is compared to that of larger particles, granular silver films with 7 < R < 15 nm grains, with similar extinction values. The amplification is found to be larger for the 1.8nm NPs due to the higher surface/volume ration that allows higher density of hot spots. It is demonstrated that Raman amplification can be efficiently increased by depositing low density layers of ultra-small NPs on top of granular films.

5.
ACS Appl Mater Interfaces ; 12(26): 29181-29193, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484323

RESUMEN

Water-in-salt (WIS) electrolytes are gaining increased interest as an alternative to conventional aqueous or organic ones. WIS electrolytes offer an interesting combination of safety, thanks to their aqueous character, and extended electrochemical stability window, thanks to the strong coordination between water molecules and ion salt. Nonetheless, cost, the tendency of salt precipitation, and sluggish ionic transfer leading to poor rate performance of devices are some intrinsic drawbacks of WIS electrolytes that yet need to be addressed for their technological implementation. It is worth noting that the absence of "free'' water molecules could also be achieved via the addition of a certain cosolvent capable of coordinating with water. This is the case of the eutectic mixture formed between DMSO and H2O with a molar ratio of 1:2 and a melting point as low as -140 °C. Interestingly, addition of salts at near-saturation conditions also resulted in an increase of the boiling point of the resulting solution. Herein, we used a eutectic mixture of DMSO and H2O for dissolution of LiTFSI in the 1.1-8.8 molality range. The resulting electrolyte (e.g., the so-called aqueous-eutectic-in-salt) exhibited excellent energy and power densities when operating in a supercapacitor cell over a wide range of extreme ambient temperatures, from as low as -35 °C to as high as +65 °C.

6.
J Phys Chem B ; 124(19): 4002-4009, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32298108

RESUMEN

Deep eutectic solvents (DESs) resulting from the right combination between a hydrogen-bond donor (HBD) and a hydrogen-bond acceptor (HBA) are becoming quite popular in number of applications. More recently, natural DESs (NADESs) containing sugars, natural organic acids, and amino acids as HBDs and ChCl as HBA have received great attention because of their further environmental sustainability as compared to regular DESs. Within this context, mixing water in controlled amounts has been widely accepted as a simple and practical way of altering DES chemical and thermodynamic properties, with viscosity and conductivity experiencing the most significant changes. However, the number of papers describing eutectic mixtures with water as the only HBD is scarce and basically none has been done in fundamental terms. Herein, we investigated mixtures composed of water as the only HBD and ChCl as the HBA using differential scanning calorimetry (DSC) as well as 1H nuclear magnetic resonance (NMR) and Brillouin spectroscopies. We found the aqueous dilution of ChCl/2H2O with a ChCl/2H2O content of ca. 80 wt % was an eutectic. Interestingly, this mixture could be considered a NADES according to its eutectic distance (ΔTme), in range to eutectics obtained in aqueous dilutions of salt hydrates.

7.
Chem Commun (Camb) ; 56(25): 3592-3604, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32162645

RESUMEN

The aim of this featured article is to illustrate some of the most recent applications of deep eutectic solvents (DESs) in the synthesis of carbon and carbon composites. DESs can be obtained by the complexation of quaternary ammonium salts with hydrogen-bond donors. DESs have typically been referred to as a related class of ionic liquids because they share many properties. However, DESs present the advantage of easier and low-cost preparation. Moreover, their compositional flexibility can eventually be translated into materials that provide advanced functionalities and/or tailored hierarchical structures. Interestingly, the use of the liquid binary mixtures of DESs and H2O for the preparation of carbon materials plays a critical role with regard to the achievement of some particular porous morphologies. Herein, we will also summarize some recent studies performed on DES/H2O liquid binary mixtures, revealing the possibility of obtaining new eutectic mixtures upon the simple addition of water to DESs while keeping the DES contents at a certain pseudo-concentrated range. This finding will pave the way to novel applications, especially in those fields in which the preparation of high-tech products via low-cost processes is critical. We hope that this featured article will encourage scientists to explore the promising perspectives offered by DESs and aqueous dilutions thereof.

8.
Sci Rep ; 6: 39561, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27996042

RESUMEN

The potential of UV-light for the photochemical synthesis and stabilization of non-equilibrium crystalline phases in thin films is demonstrated for the ß-Bi2O3 polymorph. The pure ß-Bi2O3 phase is thermodynamically stable at high temperature (450-667 °C), which limits its applications in devices. Here, a tailored UV-absorbing bismuth(III)-N-methyldiethanolamine complex is selected as an ideal precursor for this phase, in order to induce under UV-light the formation of a -Bi-O-Bi- continuous network in the deposited layers and the further conversion into the ß-Bi2O3 polymorph at a temperature as low as 250 °C. The stabilization of the ß-Bi2O3 films is confirmed by their conductivity behavior and a thorough characterization of their crystal structure. This is also supported by their remarkable photocatalytic activity. Besides, this processing method has allowed us for the first time the preparation of ß-Bi2O3 films on flexible plastic substrates, which opens new opportunities for using these materials in potential applications not available until now (e.g., flexible photocatalytic reactors, self-cleaning surfaces or wearable antimicrobial fabrics). Therefore, photochemical solution deposition (PCSD) demonstrates to be not only an efficient approach for the low temperature processing of oxide films, but also an excellent alternative for the stabilization of metastable phases.


Asunto(s)
Bismuto/química , Fotoquímica/métodos , Titanio/química , Catálisis , Cristalografía por Rayos X , Vidrio , Ensayo de Materiales , Metales/química , Óxidos/química , Procesos Fotoquímicos , Plásticos , Silicio/química , Estrés Mecánico , Temperatura , Termodinámica , Rayos Ultravioleta , Difracción de Rayos X
9.
Phys Rev Lett ; 112(16): 165901, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24815658

RESUMEN

The two most prominent and ubiquitous features of glasses at low temperatures, namely the presence of tunneling two-level systems and the so-called boson peak in the reduced vibrational density of states, are shown to persist essentially unchanged in highly stabilized glasses, contrary to what was usually envisaged. Specifically, we have measured the specific heat of 110 million-year-old amber samples from El Soplao (Spain), both at very low temperatures and around the glass transition Tg. In particular, the amount of two-level systems, assessed at the lowest temperatures, was surprisingly found to be exactly the same for the pristine hyperaged amber as for the, subsequently, partially and fully rejuvenated samples.

10.
J Phys Condens Matter ; 25(29): 295402, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23817920

RESUMEN

We have measured the specific heat of amber from the Dominican Republic, an ancient geological glass about 20 million years old, in the low-temperature range 0.6 K ≤ T ≤ 26 K, in order to assess the effects of its natural stabilization (hyperageing) process on the low-temperature glassy properties, i.e. boson peak and two-level systems. We have also conducted modulated differential scanning calorimetry experiments to characterize the thermodynamic state of our samples. We found that calorimetric curves exhibit a huge ageing signal ΔH ≈ 5 J g(-1) in the first upscan at the glass transition Tg = 389 K, that completely disappears after heating up (rejuvenating) the sample to T = 395 K for 3 h. To independently evaluate the phonon contribution to the specific heat, Brillouin spectroscopy was performed in the temperature range 80 K ≤ T ≤ 300 K. An expected increase in the Debye level was observed after rejuvenating the Dominican amber. However, no significant change was observed in the low-temperature specific heat of glassy amber after erasing its thermal history: both its boson peak (i.e., the maximum in the Cp/T(3) representation) and the density of tunnelling two-level systems (i.e., the Cp ∼ T contribution at the lowest temperatures) remained essentially the same. Also, a consistent analysis using the soft-potential model of our Cp data and earlier thermal-conductivity data found in the literature further supports our main conclusion, namely, that these glassy 'anomalous' properties at low temperatures remain essentially invariant after strong relaxational processes such as hyperageing.


Asunto(s)
Frío , Sedimentos Geológicos/química , Vidrio/química , Rastreo Diferencial de Calorimetría , Calor , Termodinámica , Temperatura de Transición
11.
J Chem Phys ; 131(17): 174508, 2009 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-19895026

RESUMEN

We investigated through noncommercial calorimetry and elastoacoustic Brillouin experiments the phase diagram of n-butanol and measured the specific heat and the thermal conductivity in a wide low-temperature range for its three different states, namely, glass, crystal, and the so-called "glacial" states. The main aim of the work was to shed light on the controversial issue of these allegedly polyamorphic transitions found in some molecular glass-forming liquids, first reported to occur in triphenyl phosphite and later in n-butanol. Our experimental results show that the obtained glacial state in n-butanol is not a homogenous, amorphous state, but rather a mixture of two different coexisting phases, very likely the (frustrated) crystal phase embedded in a disordered, glassy phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...